Primeval Poop Profiles

Studies of ancient poop found “humans as long as 2,700 years ago in the Iron Age were already using sophisticated techniques in flavoring the fermented foods.” They especially loved pairing pale ale with blue cheese.

A paper published in Current Biology detailed how researchers used paleo fecal samples  found in salt mines in Austria to analyze the food ancient people were consuming. Their stool dehydrated in the salt, creating an ideal, preserved sample.

Researchers from the Institute for Mummy Studies, the University of Trento and the Vienna Museum of Natural History also found industrialization transformed the Western diet. Humans used to have healthier, more biodiverse gut microbiomes “because they were eating unprocessed foods.”
Frank Maixner, one of the paper’s lead authors, believes combining archaeology and microbiology could “illuminate the greater puzzle of human history.”

Read more (Popular Science)

Researchers have discovered a milk alternative: fermenting pea and rice with probiotic strains. This dairy-free mixture is  highly digestible and has the same animal protein as  found in milk, casein. 

Fermentation was critical to the results. Plant-based proteins are poorly digested because they are often insoluble in water, explains Professor Monique Lacroix of Institut National de la Recherche Scientifique (INRS). Animal proteins, in contrast, “usually take the form of elongated fibers that are easily processed by digestive enzymes.” But lactic acid bacteria in the fermented pea and rice drink predigested the proteins, improving digestibility.

“Fermentation allowed for the production of peptides (protein fragments) resulting from the breakdown of proteins during fermentation, facilitating their absorption during digestion,” notes an article on the research in Nutrition Insight.

INRS partnered with probiotics company Bio-K+ on the research. Their findings were published in the Journal of Food Science.

Read more (Nutrition Insight)

Natto significantly lowers levels of both glucose and insulin, according to research by Japan’s National Agriculture and Food Research Organization. Natto, a traditional food in Japan, is a fermented soybean dish valued for its high-nutrient content. It’s characterized by sticky strands that stretch from the dish when stirred and, the research showed, stickier natto is healthier.

Natto’s stringy texture is produced by y-polyglutamic acid (y-PGA), and stickier natto has higher levels of y-PGA. When nondiabetic men and women were fed a series of meals of both high-and low-y-PGA natto, high y-PGA natto “significantly” lowered glucose and insulin levels in the test subjects.

Study results were published in the scientific journal Nutrients. Researchers next hope to “study the long-term health impacts of a diet that includes high γ-PGA natto.”

Read more (Chemical & Engineering News)

Tea connoisseurs have long believed that black tea’s flavor comes from the chemicals created during oxidation, but a new study reveals microbes at play. Black’s tea’s rich flavor is partly due to fermentation, the same microbial process used to create fermented teas like kombucha, jun and pu’erh.

What does this mean for tea producers? By adjusting the microbes on the tea leaves, fermentation could amplify the flavor in the final brewed cup of tea.

“The finding that bacterial and fungal communities also drive tea processing suggests the microbiome of the leaves can be manipulated to create greater quantities of tasty compounds due to fermentation,” says Dan Bolton, founder, editor and publisher of Tea Journey.

In research published in the Journal of Agricultural and Food Chemistry, a team of scientists from Anhui Agricultural University in China studied how sterilization of tea leaves affected tea flavor. They began by sampling the microbes on leaves from the Dongzhi tea plantation in Anhui province. Half the leaves were sterilized in mild bleach for five minutes — the other half were left untouched. All the leaves were then processed traditionally: withered, rolled, oxidized in the sun and dried.  

Their conclusions found black tea produced through microbial fermentation from the unsterilized sample was full of catechins and L-theanine. Catechins are flavonoids and a naturally-occurring antioxidant; L-theanine is an amino acid (also found in  mushrooms) known to ease stress and insomnia. Both compounds  help make tea flavorful. The sterilized leaves produced tea that didn’t have the same amount of compounds, and so wasn’t as flavorful.

“The sterilization process dramatically decreased the content of total catechins and theanine in black tea, indicating that microbes on the surface of tea leaf may be involved in maintaining the formation of these important metabolites during black tea processing,” says Ali Inayat Mallano, PhD, professor at the university.

Interestingly, sterilization had no effect on green tea. Both samples of green tea, sterilized and unsterilized, had the same levels of caffeine and theanine.

[To explore premium dark teas, TFA recently organized a webinar Beyond Kombucha: Pu’erh, Jun and Dark Tea with Bolton and tea experts Jeff Fuchs (author, Himalayan explorer and co-founder of Jalam Teas) and Brendan McGill (chef and James Beard nominee who owns Hitchcock Restaurant Group in Seattle and Junbug Kombucha).

Can Gut Microbes Fight Viruses?

An estimated 40 trillion microbes make up our gut microbiome. Researchers are now studying how these microbes protect our immune system, fighting off viruses like Covid-19.

“Imagine microbes that block a virus from entering a cell or communicate with the cell and make it a less desirable place for the virus to set up residence,” says Mark Kaplan, chair of the department of microbiology and immunology at the Indiana University School of Medicine. “Manipulating those lines of communication might give us an arsenal to help your body fight the virus more effectively.”

These microbes, according to an article in National Geographic, may fight viruses in one of three ways: “building a wall that blocks invaders, deploying advanced weaponry and providing support to the immune system.” Kaplan calls intestinal bacteria “the gatekeepers between what we eat and our body.”

The article details the new, innovative measures medical professionals are taking to repair a patient’s damaged gut microbiome — transplanting fecal matter, administering a bacteria-targeting virus and pills that release antiviral interferons. But the most compelling way may be consuming a diet rich in fermented foods — the article notes a consensus among medical and science professionals that fermented foods can promote a healthy microbiome.

Read more (National Geographic)

Fermented Foods FAQ

The New York Times breaks down “The Dos and Don’ts of Fermented Foods” in a new article. Food science writer, Anahad O’Connor, was interviewed to answer some of the most frequently asked questions about fermented foods. For example: What are the differences in sugar content of yogurt brands? How can fermented foods be incorporated into daily life? 

O’Connor says there are “thousands of different types of fermented foods consumed around the world” that “are chock-full of live microorganisms, known as probiotics, and they are widely available at grocery stores, supermarkets and farmers’ markets.” 

He shared his advice for shopping for fermented foods, pointing out: “Not all foods that are made through fermentation contain live microorganisms when they reach store shelves or your kitchen table.” Sourdough, for example, loses all fermented bacteria once baked. Most wine is filtered and processed to make any live microbes disappear. Fermented foods packaged with statements like “containers probiotics,” “contains live cultures” or “naturally fermented” are good products to look for — and most are in the refrigerated aisles.

Read more (The New York Times)

Three weeks ago, The Fermentation Association shared results of a Stanford study that found fermented foods improve health. Numerous media outlets picked up on the study results, too, and now The New York Times has shared them as well, reporting: “Now scientists are discovering that fermented foods may have intriguing effects on our gut. Eating these foods may alter the makeup of the trillions of bacteria, viruses and fungi that inhabit our intestinal tracts, collectively known as the gut microbiome. They may also lead to lower levels of body-wide inflammation, which scientists increasingly link to a range of diseases tied to aging.”

The Times article pointed out that the study results challenge the long-held belief that fiber-rich foods are good for the gut. A high-fiber diet instead showed little impact on the makeup of the gut microbiome. In fact, study participants who “had the least microbial diversity had slight increases in inflammation when they ate more fiber…” suggesting they lacked the microbes to digest the amount of fiber consumed. 

Meanwhile, the participants that consumed a diet high in fermented foods had a greater number of microbial species develop in their gut. And only 5% of those new microbes were directly from the fermented foods they ate. “The vast majority came from somewhere else, and we don’t know where,” says Justin Sonnenburg, an author of the new study and a professor of microbiology and immunology at Stanford.

Read more (The New York Times)

“If there were a country whose cuisine excels in the realm of fermented foods, it’s Japan,” highlights an article in Discover Magazine. In Japan, hakkо̄ (which translates to “fermentation”) forms “the very basis of gastronomy in the island nation,” continues the article.

Tsukemono (pickles), miso (fermented soy bean paste), soy sauce, nattо̄ (fermented soy beans), katsuobushi (dried fermented bonito flakes), nukazuke (vegetables pickled in rice bran), sake and shōchū (liquor distilled from rice, brown sugar, buckwheat or barley) are all staples of traditional Japanese meals. 

Nattо̄ in particular has been proven to lower obesity rates, boost levels of dietary fiber, protein, calcium, iron and potassium and reduce diastolic blood pressure.

Though the article highlights the few, limited studies on the effects of other fermented foods, it also noted how difficult it is to study them. There little money behind the study of traditional foods (outside of yogurt), and participants in any such research would need to be on the same diets and exercise programs in order to produce objective results. A study would also need to take place over multiple years — “the cost would be vast, the ethics questionable.”

Read more (Discover Magazine)

Beer’s Complex Makeup

German scientists have found at least 7,700 different chemical formulas — translating to tens of thousands of unique molecules — in 467 commercial beer types.. Researchers with Technical University of Munich (TUM) and Helmholtz Zentrum München, Neuherberg, Germany (HZM-Neuherberg) used state-of-the-art mass spectrometry techniques to reveal the vast metabolic complexity, according to a study published in Frontiers in Chemistry. 

The beers tested came from all over the world — U.S., Latin America, Europe, Africa and East Asia — and were brewed with barley alone or from a mix of barley and wheat, rice or corn. 

Of the distinct molecules discovered, 80% had not yet been described in chemical databases. 

“We show that this diversity originates in the variety of raw materials, processing, and fermentation,” said first author Stefan Pieczonka, a PhD student at TUM. “This complex reaction network is an exciting focus of our research, given its importance for food quality, flavor, and also the development of novel bioactive molecules of interest for health.”

Read more (Tech Radar)

The Fermentation Association recently surveyed our community to better understand who has engaged with us, how their businesses are doing and to gauge the impact of the pandemic. We want to share the very interesting results.

A few qualifying comments first, however. This survey should not be interpreted as producing a profile of the fermented industry — it reached only those with whom we have connected since TFA was launched in 2017. This group is heavily weighted to Food and Beverage Producers and those in the Science, Health and Research fields. And, even as we note surprisingly high response rates below, the quantities of responses to certain questions were small and would not meet standard analytical thresholds of statistical significance. So please treat the comments and conclusions that follow as directional rather than definitive. 

We received 450 full or partial responses — nearly twice the number we had expected and what we would have considered “good.” Not surprisingly, the bulk of these were from Food and Beverage Producers — just under half — with a strong representation of the Science, Health and Research community, a little less than one-fifth. The balance of the respondents were classified as Supplier or Service Provider (9%); Chef/Writer/Educator (8%); Retailer/Distributor/Broker (3%); Food Service/Hospitality (3%); or fell into a miscellaneous Other category (12%).

We will be presenting further analyses and follow-up discussions in the coming weeks. This article focuses on the two largest segments: first, Food & Beverage Producers; then, Science, Health, and Research. 

FOOD & BEVERAGE PRODUCERS

  • We found that over 80% of our Producers are small businesses with 25 or fewer  employees, and 65% had 2020 sales of less than $500,000. That said, over 11%  of the companies represented are toward the other end of the spectrum, with 100 or more on staff, and 13% with revenue of over $10 million.
  • We reach a lot of Owners/Founders/Senior Executives, over 70% of respondents. The next most well-represented functional areas are Operations and Product Development.
  • These businesses are spread across the developmental timeline — a little over 40% are selling at the local level, or earlier in their growth cycle (selling at farmers market or still in testing/pre-launch mode). Yet 45% are selling regionally, nationally or internationally.
  • Retail is still the largest (45%) channel of sale for these producers, but Direct-to-Consumer (DTC) is just slightly behind at 40%, with the remaining 15% through Food Service/Hospitality.
  • Sauerkraut/Kimchi, Pickles, Condiments/Sauces and Kombucha were the most frequently-listed product categories, each mentioned by more than 20% of the producers. Kefir, Vinegar/Shrubs, Wine and Miso also were mentioned often. Of the 25 product categories listed, we had respondents involved in every one — except poor, slimy, and unrepresented natto.
  • Nearly half of producers selling at retail and/or DTC had sales gains in 2020 and another third maintained their revenues. Not surprisingly, nearly 40% of producers selling into food service saw sales take a hit — only 15% reported gains. 
  • The Covid-19 pandemic caused a host of issues for producers, though their prevalence seemed to vary depending on the size of the company. Among larger producers, over 90% had issues meeting demand, with the primary problems being shortages of raw materials, packaging and staff, as well as distribution delays. Fewer of the small producers reported issues, but their problems fell into the same categories. Financial difficulties were cited more often among small producers.
  • Nearly 30% of producers took advantage of the government’s Payroll Protection Plan.
  • This year appears to continue or build on the sales levels achieved in 2020 for most producers. Nearly 40% report first quarter 2021 sales at the same level as last year, and nearly 50% reported further increases. And producers are optimistic about continuing these trends, with a mere 5% anticipating sales declines.  
  • Most (nearly two-thirds) of responding producers did not participate in tradeshows and conferences, and therefore felt no business impact from show cancellations in 2020.
  • The producers that did participate in events favored the Natural Products Expos, Fancy Food Shows and IFT Show. While some felt that they lost short-terms sales and their future growth was hurt by the shows being cancelled, nearly 30% noted that they saved money and time by not attending. Some of those savings were reinvested in increased marketing, DTC sales and virtual events.
  • Interestingly, half of the producers plan to continue their involvement as events resume at the same level as before the pandemic, and fully one-third plan to increase activity.
  • Looking ahead, producers see numerous challenges on the horizon, led by a need for expanded distribution. They expect many of the recent shortages to continue to challenge, compounded by production, facility and financial constraints. While Covid protocols and food safety concerns persist, they are joined by the need for product development, e-commerce skills, and consumer marketing
  • The clearly-articulated top priority for producers is a better-educated consumer. When asked what would foster increased consumption of fermented foods and beverages, the top item for nearly 70% is consumer education as to the nature and benefits of fermentation. The next highest priorities all support this same goal — more research into health impact (+40%), greater familiarity with flavors of fermentation (+40%) and more exposure at retail (+30%).

SCIENCE, HEALTH & RESEARCH

  • The bulk — nearly 75% — of these respondents work in an academic environment, with very small clusters in government and medical/health organizations. It’s a well-educated group, with over half holding doctorates, plus another quarter with Master’s degrees. Roles are split quite evenly into thirds — professors, science/technical support and students/postdocs.
  • Over 60% of these respondents are looking into connections between fermentation and health; roughly half are specifically focused on gut health and the human microbiome. Overall, three-quarters are currently researching fermentation and fermented products. Their activities, though, span the full spectrum of product categories. All the key categories among our producers — Sauerkraut/Kimchi, Pickles, Condiments/Sauces, Kombucha and Kefir — were well-represented in research. But they were joined by meaningful work across the board — Yogurt, Beer, Cheese, Alternative Proteins, Koji, Wine, Sourdough, Tempeh, Tea — even Natto!
  • Slightly more than a third of this group is involved with fermented alternative proteins – an important, emerging category.
  • Funding for research showed more declines (30% of respondents) than gains (under 15%) over the last year. But half of our sample expects funding to increase in the coming 12-18 month.
  • Our Science, Health & Research respondents were split in how they viewed the interest in fermentation research — 60% felt the focus was increasing, but the topic was not yet a top priority. Yet a third saw fermentation as a hot topic, with more emphasis and activity than ever. 
  • Respondents in this group shared the views of producers that the key activities that would drive increased consumption of fermented products are:
    • Consumer education about fermentation
    • More research into health benefits
    • Greater consumer familiarity with fermented flavors