Investors in alternative protein don’t see the market slowing anytime soon, but they do anticipate a shakeout. Alternative proteins are a mere 1-2% of the $1.4 trillion meat industry. The current giants of the alternative space — Beyond Meat and Impossible Foods — are just the beginning. Industry investors predict the next challengers will come from fermentation, air and mycoprotein sources.
“We saw the alternative milk market take 20% of that (dairy) market. We think that [in] the meat market, the same thing could happen,” says Darren Streiler, managing director of ADM Ventures. Streiler calls products utilizing precision-based fermentation, gas-based fermentation and fungi the “next wave of alternative proteins.”
Utilizing fungi, also known as mycoprotein, involves fermenting the spores of specific mushrooms to produce protein-rich food. (Fungi on parasites and yeasts are also used, but not as frequently as mushrooms). “Flexitarian” consumers, Streiler adds, are seeking these hybrid food products.
Streiler was on a panel of investors discussing trends at the Institute of Food Technologists (IFT) annual meeting and expo, IFT FIRST. Sanjeev Krishnan, chief investment officer and managing director of S2G Ventures, and Jeff Grogg, managing director of JPG Resources, joined Streiler. The three agreed that taste, nutrition, affordability and sustainability are key to succeeding in the alternative protein market.
“I think we’re at the iPod phase and not even in the iPhone phase of this protein revolution,” Krishnan says. “That transition from iPod to iPhone I think is going to require more focus on taste, particularly the fat side of the equation, to get that umami feel of traditional protein. And I see a lot more opportunity to innovate.”
The alternative protein market is still dominated by plant-based options but, as arable land becomes more scarce, sustainably-produced protein will be critical.
Why Sustainable Protein?
It takes two years for a steak to get from farm-to-fork — raising cattle contributes significantly to carbon gases, pollutes water and requires a large amount of land. The world is facing an impending global food crisis: there will be 10 billion people to feed in 2050, requiring a 70% increase in food production. But the amounts of farming land and fresh water are declining, while greenhouse gases increase. Air Protein founder Lisa Dyson thinks fermentation can help mitigate these trends.
“We’re taking something that’s similar to fermentation — you can think about it as fermentation reimagined — we’re taking cultures, but with the typical fermentation process, you actually emit carbon dioxide. We’re reversing that. We’re actually using carbon dioxide as an input instead,” Dyson says.
Dyson also spoke at the IFT event. Chef Carla Hall, who introduced Dyson, called Air Protein “the rocket science of food.”
Closed-Loop Carbon Cycle
Founded in 2019, Air Protein uses a half-century-old food technology originally intended to feed astronauts on long space missions. In the sixties, NASA discovered microbes — called hydrogenotrophs — could harvest energy from carbon dioxide in the air and, in a matter of hours or days, turn it into nutrients. The process is completely carbon negative — astronauts in a spaceship breathe out carbon; that gas is captured and fed to cultures, which in turn create a protein.
Culinary techniques can then be applied to that protein, mimicking the textures and flavors of a juicy steak or chicken breast. Dyson says innovators in alternative proteins still call this food meat.
“It’s the new meat of tomorrow, the future of meat as it were,” she says. And hydrogenotrophs don’t require light or arable land to grow. The process, according to Dyson, is “immensely scalable.” An Air Protein “farm” could be put anywhere you could build a brewery.
“Imagine this process that is essentially super efficient, going from air to plant in a matter of hours, a matter of days, versus years,” she adds. “So this is a very fast process and it allows us to make food and feed the nations, the growing population in a way that uses minimal land, minimal water, and is actually carbon negative.”